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Nonrelativistic clamped-nuclei pair interaction energy for ground-state helium atoms has been computed for
12 interatomic separations ranging from 3.0 to 9.0 bohr. The calculations applied the supermolecular approach.
The major part of the interaction energy was obtained using the Gaussian geminal implementation of the
coupled-cluster theory with double excitations (CCD). Relatively small contributions from single, triple, and
quadruple excitations were subsequently included employing the conventional orbital coupled-cluster method
with single, double, and noniterative triple excitations [CCSD(T)] and the full configuration interaction (FCI)
method. For three distances, the single-excitation contribution was taken from literature Gaussian-geminal
calculations at the CCSD level. The orbital CCSD(T) and FCI calculations used very large basis sets, up to
doubly augmented septuple- and sextuple-zeta size, respectively, and were followed by extrapolations to the
complete basis set limits. The accuracy of the total interaction energies has been estimated to be about 3 mK
or 0.03% at the minimum of the potential well. For the attractive part of the well, the relative errors remain
consistently smaller than 0.03%. In the repulsive part, the accuracy is even better, except, of course, for the
region where the potential goes through zero. For interatomic separations smaller than 4.0 bohr, the relative
errors do not exceed 0.01%. Such uncertainties are significantly smaller than the expected values of the
relativistic and diagonal Born-Oppenheimer contributions to the potential.

I. Introduction

An accurate knowledge of the potential curve for two
interacting ground-state helium atoms is of obvious significance
for a variety of theoretical and experimental investigations.
Examples include simulations of the condensed phase of
helium,1 computational spectroscopy of helium-solvated mol-
ecules2 (the subject of great recent experimental interest3-11),
or predictions of thermophysical properties of helium gas.12,13

In the latter field, currentab initio predictions are more accurate
than measurements, even for properties that can be measured
with high precision, such as viscosity.14 The main motivation
for the present study comes from the work of the metrology
groups aimed at creation of new pressure and temperature
standards based on measurements of the helium dielectric
constant using capacitors,15-18 microwave techniques,19 or
Fabry-Perot interferometers at optical frequencies.20 The
technique of dielectric constant gas thermometry can also be
used to determine a more accurate value of the Boltzmann
constant,kB, which could lead to a new definition of kelvin.21

The current temperature standard, ITS-90, defines the temper-
ature scale using a set of fixed points and interpolating between
these points with platinum thermometers. The discrepancies
between the standard and the thermodynamics measurements
are five times the assumed uncertainty of ITS-90 in some
regions.22 Therefore, the creation of a new temperature standard
is one of the high-priority goals in metrology.21,23

The relation connecting the temperature,T, with the pressure
and the dielectric constant involves the density and dielectric

virial coefficients, which must be known to sufficiently high
accuracy ifT is to be determined to a better precision than given
by ITS-90. The second density virial coefficient,B(T), contrib-
utes to the uncertainties with the highest weight and must be
known with greatest precision. The current most accurate values
of B(T) are those from first-principle calculations and have been
obtained by Janzen and Aziz24 using the SAPT96 potential25,26

and by Hurly and Moldover13 using a modification of SAPT96.
By comparing with predictions of otherab initio calculations,
which gave the depth of the potential about 100 mK or about
1% different from SAPT96, Hurly and Moldover estimated the
uncertainty of the theoreticalB(T) at 300 K to be 2200 ppm.13

The needs of the metrology community call for a determination
of the helium pair potential with relative uncertainties less than
0.05% both in the attractive and in the repulsive region. Such
a potential can be expected to give values ofB(T) accurate to
about 100 ppm, which should be more than sufficient for the
new temperature or pressure standards. The pair potential can
also be used to obtain accurate values of the dielectric virial
coefficient,b(T), and of the third density virial coefficient,C(T),
provided, of course, that accurate values of the collision-induced
polarizability and of the three-body part of the interaction energy
are known, respectively. It is expected that virtually all
thermodynamics properties of helium can now be predicted from
first principles with uncertainties smaller than the experimental
ones. The availability of highly accurate thermodynamic func-
tions for helium may also lead, via relative measurements, to
improved accuracy of analogous functions for other rare gases
like argon.27

There exists vast literature onab initio calculations of the
interaction energy of two ground-state helium atoms in the
nonrelativistic Born-Oppenheimer approximation; for reviews
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of this work, see refs 26 and 28-31. With a few notable
exceptions,25,26,32-36 older calculations (prior to year 2000) did
not involve any estimations of error bounds. As we know now,
the best work of this period was accurate to about 100 mK in
the region around the minimum. In the early 2000s, the well
depth of the potential could be predicted28,37 with an error of
about 20 mK, although calculations claiming higher accuracy
were also reported.38 In the most recent calculations,29,30,39error
bars smaller than 10 mK at the minimum were obtained, but
these calculations were performed for only a few interatomic
separations. The goal of the present paper is to improve the
method used in refs 29 and 30 and to extend the calculations
reported in these references to a sufficient number of interatomic
separations to enable an accurate analytic fit.

The method presented and extensively tested in refs 29 and
30 is based on the supermolecular (SM) approach, that is,
involves a numerical subtraction of atomic energies from the
dimer energy, all computed using the same dimer-centered basis
set. The bulk of the interaction energy (about 90% at large
separationsRand much more than 90% in the repulsive region)
is obtained using the explicitly correlated implementation40,41

of the coupled cluster doubles (CCD) method. With the use of
Gaussian-type geminals (GTGs) and extensive optimization of
nonlinear parameters (separately for each value ofR), this part
of the interaction energy can be obtained with a basis set
incompleteness error that is negligible in comparison to the error
of the remaining part of the interaction energy. This remaining
part, coming from the contributions of single, triple, and
quadruple excitations, is recovered by employing conventional
orbital basis sets containing, however, a significant fraction of
functions placed on the interatomic bond, which has been shown
to be critical for the recovery of the dispersion component of
the interaction energy.42 Finite basis set calculations, both
geminal and orbital ones, are followed by extrapolations to the
complete basis set (CBS) limit.

Since the nonlinear parameters used in the geminal CCD
calculations are obtained by minimizing the second-order energy
of many-body perturbation theory with the Møller-Plesset
partitioning of the Hamiltonian (MP2) (via the weak-orthogo-
nality functional43,44), very accurate, basis set saturated values
of MP2 energies for the helium dimer are obtained as a
byproduct of the geminal CCD calculations. These energies will
be used in the present work in one of the extrapolation
procedures needed to obtain accurate values of contributions
to the interaction energy other than those obtained at the CCD
level of theory.

The contribution from single excitations, denoted byES, can
be computed very accurately from explicitly correlated CCSD
theory41,45using GTG basis sets. Since this contribution is very
small (about 1% of the interaction energy at largeR and much
less than 1% in the repulsive region), it is also possible29,30 to
compute it accurately using conventional, orbital-based CCSD
theory.46 Although the orbital expansion of the singles contribu-
tion converges very slowly, this contribution can be predicted
with about 1% error when a suitable CBS extrapolation is
employed. The efficiency of this CBS extrapolation has been
verified29,30 by a comparison with the values ofES computed
using CCSD and GTG bases.29,30 It should be noted that the
ability of obtaining ES from purely orbital calculations is
essential because Gaussian geminal CCSD calculations for all
separationsR would be much more time-consuming than the
calculations we have performed.

The interaction energy components beyond the CCSD level
can be obtained29,30 using the conventional, orbital-based

CCSD(T) approach (coupled-clusters single- and double-excita-
tion method with a noniterative account of triple excitations)47,48

for the bulk of the triple excitation contribution, denoted by
ET, followed by the full configuration interaction (FCI) calcula-
tion to account for the relatively small contribution, denoted
by δEFCI, coming from the remaining triple and all the quadruple
excitations. The studies of refs 29 and 30 have shown thatET

andδEFCI can be obtained with errors on the order of 0.1% and
1%, respectively, using the largest practically feasible orbital
basis sets. In fact, up to doubly augmented correlation-consistent
septuple-zeta bases supplemented with a large set of bond
functions must be used in calculations at the CCSD(T) level,
followed by CBS extrapolations, to reach this accuracy. At the
FCI level, only up to quintuple-zeta basis sets could be applied
in refs 29 and 30. It was not clear whether the corresponding
CBS extrapolations are more reliable than the values computed
in the largest basis sets, and therefore both types of results were
used to determine the recommended values ofδEFCI and their
error bars.

In refs 29 and 30, considerable effort has been made to
estimate the uncertainties of the computed interaction energy
components. In fact, in these studies as well as in the present
work, most of the effort went not into the computation of the
recommended values of the interaction energy, but into the
estimation of the error bounds. One should realize that such
estimates forab initio electronic structure calculations are not
rigorous and should be viewed as judicious but somewhat
arbitrary assessments based on observed rates of convergence.
Rigorous upper bounds can be computed variationally using the
four-electron explicitly correlated Gaussian (ECG) basis,49-51

and we will make comparisons with these results. On the other
hand, rigorous lower bounds are much more difficult to compute
and have not yet been obtained with useful accuracy even for
simplest atomic systems.

In the present work, we adopt the general strategy of
calculations outlined in refs 29 and 30, with several elements
of this strategy improved. We report here calculations for a wide
range of interatomic separations, which enables analytical fitting
of the potential (in refs 29 and 30, only three typical interatomic
separations were considered). The major improvements of the
computational strategy include new methods for the optimization
of the SCF orbitals, very accurate calculations of the nonfac-
torizable part of the CCD interaction energy using only orbital
basis sets, and increased number of CBS extrapolations.
Furthermore, we extended the FCI code52 so that basis sets with
cardinal numbers larger than previously could be used. This
increase in the quality of FCI calculations combined with a better
understanding of the CBS extrapolations have enabled us to
significantly reduce the error bars compared with those reported
in refs 29 and 30.

In parallel to the SM calculations, our group was working
on improvements of the SAPT interaction energies of refs 25
and 26. These developments will be described in a separate
paper,53 where we will also present an analytic fit of the potential
performed using a combination of SM and SAPT interaction
energies, supplemented at very smallRby results of variational
calculations with the ECG basis.51

II. Method of Calculations

The interaction energy of the helium dimer,Eint, can be
computed using the following partitioning:

Eint ) ESCF+ ECCD
cr + ES + ET + δEFCI (1)
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where ESCF is the Hartree-Fock interaction energy,ECCD
cr is

the correlation part of the interaction energy computed at
the CCD level of theory,ES is the single-excitation con-
tribution to the interaction energy as predicted by the CCSD
method,

ET is the triple-excitation contribution to the interaction energy
accounted for by the CCSD(T) method,

andδEFCI, defined as

collects the remaining triple-excitation effects and the whole
quadruple-excitation contribution obtained using the FCI ap-
proach. The symbolsECCD, ECCSD, ECCSD(T), or EFCI always refer
here to the interaction energies obtained using the indicated
level of theory and not to the total dimer energies. For ex-
ample,

where EX
FCI is the total energy of system X: dimer AB,

monomer A, or monomer B. The total monomer energies in
both geminal- and orbital-based approaches are computed using
the full dimer basis set; that is, the interaction energies include
the counterpoise correction (CP) for the basis set superposition
error (BSSE).

In the explicitly correlated CCD theory, the correlation part
of the CCD interaction energy,ECCD

cr , splits naturally into the
factorizable, EFCCD

cr , and nonfactorizable (NF) contribution,
ENF,40

the latter expressible entirely through nonfactorizable four-
electron integrals and for this reason very time-consuming to
compute. In the context of purely orbital calculations, the FCCD
approximation is known as the ACP-D45 method54,55 or the
ACCSD approximation.56 As shown in ref 30, the nonfactor-
izable contribution converges very fast with orbital bases, and
therefore, its evaluation with Gaussian geminals, although
rapidly convergent as well, would be unnecessarily time-
consuming. Thus, we restricted the GTG calculations to the
FCCD level and added theENF contribution obtained in orbital
bases. This procedure does not lead to any loss of accuracy
since the error ofECCD

cr is dominated by the error ofEFCCD
cr .

With this splitting, the final decomposition of the interaction
energy becomes

The GTG coupled-cluster methodology was presented in
detail in ref 30 and in earlier papers40,41,45so that only the most
essential information will be repeated here. The total FCCD
correlation energy of a closed-shellN-electron system is
expressed as

The pair contributionsεRâ
s are defined by

whereφR, R ) 1, 2, ...,N/2, are occupied Hartree-Fock orbitals
andτRâ

s are two-electron spinless cluster functions (pair func-
tions), which are symmetric (s ) 1, “singlet”) or antisymmetric
(s ) 3, “triplet”) with respect to the exchange of electron
coordinates and are assumed to be strongly orthogonal (SO) to
the occupied orbital space. The cluster functions are expanded
in a basis set of GTGs

The operatorÂs ) 1 + (2 - s)P̂12, where P̂12 permutes the
electron coordinates, ensures the appropriate exchange symmetry
in eq 10. Similarly, the operatorΠ̂Râ ) 1 ( ı̂, where ı̂ is the
inversion through the molecular midpoint, ensures thegerade
(R ) â) or ungerade(R * â) symmetry of a pair function with
respect to the inversion. When the Gaussian centersA i andBi

are distributed along the molecular axis, the set of functions of
the form (1( ı̂)gi(r1,r2) becomes complete (forK f ∞) in the
space of two-electron functions ofΣg

+ or Σu
+ symmetry.57,58

The linear coefficients of the expansion (eq 10) are found by
solving iteratively the first-quantized FCCD equations.40 Instead
of the very time-consuming explicit SO projection, the so-called
superweak orthogonality plus projection (SWOP) method is
used, which is exact (ensures the exact strong orthogonality) in
the complete GTG basis set limit.59 Following the recommenda-
tion of ref 60 (see also ref 30), we use the same GTG basis set
for all four pair functions. This is necessary to apply the CP
correction in geminal calculations.60 The interaction energies
in explicitly correlated geminal bases are becoming CP-corrected
if the subtracted helium monomer energies are computed using
an expansion analogous to eq 10 for the singlet state, with the
terms resulting from the operatorı̂ having independent linear
coefficients (see ref 30).

The nonlinear parameters of the GTGs are found by minimiz-
ing the total MP2 energy of the helium dimer with the Powell
method, as described in ref 30. The positions of geminals were
placed both inside and outside the dimer but in the latter case
were restricted to be within 10 bohr of the nearest nucleus.
Although methods of avoiding complete optimizations of all
the parameters have been developed,61-64 the complete opti-
mizations are needed at the level of accuracy aimed at in the
present work. The MP2 calculations used the weak-orthogonality
(WO) approach.43,65Although a GTG basis set optimized at the
MP2 level is not fully optimal for expanding the FCCD pair
functions, this deficiency can be to a large extent made up by
the linear coefficients if the expansion length,K, is large enough.
In practice, the helium dimer FCCD interaction energies
obtained in this way converge almost as fast to theK ) ∞ limit
as the MP2 interaction energies.

When using the SWOP method, the cost of the GTG FCCD
calculations scales asaM4K + bM2K2, whereM is the size of
the SCF basis set anda andb are some prefactors. Therefore,
M should be as small as possible to avoid prohibitive calculation

ES ) ECCSD- ECCD (2)

ET ) ECCSD(T)- ECCSD (3)

δEFCI ) EFCI - ECCSD(T) (4)

EFCI ≡ Eint
FCI ) EAB

FCI - EA
FCI - EB

FCI (5)

ECCD
cr ) EFCCD

cr + ENF (6)

Eint ) ESCF+ EFCCD
cr + ENF + ES + ET + δEFCI (7)

EFCCD
cr ) ∑

R)1

N/2

εRR
1 + ∑

R<â

N/2

(εRâ
1 + εRâ

3 ) (8)

εRâ
s ) s

(1 + δRâ)
〈φRφâ|r12

-1|τRâ
s 〉 (9)

τRâ
s (r1,r2) ) ÂsΠ̂Râ∑

i)1

K

ci
Râsgi(r1,r2) (10)

gi(r1,r2) )

exp(-γ1i|r1 - A i|2 - γ2i|r2 - Bi|2 - δi|r1 - r2|2) (11)
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times. On the other hand, in deriving the first-quantized MP2
and CC equations, we assume that the Hartree-Fock equations
are solved exactly. To fulfill these two contradictory require-
ments as closely as possible, we use compact yet highly accurate
basis sets of floating spherical Gaussian functions to expand
molecular SCF orbitals

whereΠ̂1 ) 1 + ı̂, Π̂2 ) 1 - ı̂, and the orbital positionsCi

were constrained to the molecular axis. The nonlinear parameters
γi and Ci are carefully optimized with respect to the helium
dimer SCF energy (with similar restrictions on the maximum
distance from nuclei as in the case of geminal calculations). As
shown in ref 30, basis sets of this type require only a few dozen
terms to give a more accurateESCF than standard expansions
containing hundreds of terms.

Out of the broad spectrum of basis sets investigated in refs
29 and 30, we have selected two sequences of bases. One of
them was the augmented correlation-consistent polarized-valence
X-tuple zeta family (aug-cc-pVXZ) developed by Dunning et
al.66-69 for X ) 3, 4, 5, and 6 and by Gdanitz70 for X ) 7,
supplemented by a 6s6p6d3f1g1h set of 95 midbond functions
originally developed by Partridge and Bauschlicher;71 this
sequence will be denoted as aXZb95. The other sequence used
by us was the doubly augmented family, d-aug-cc-pVXZ
(denoted here by dXZ), without any midbond functions added.
These two sequences have been used here to obtain the CBS-
extrapolated values of all interaction energy contributions
beyond the FCCD level.

The components computed using orbital bases can be
sufficiently accurate only with extrapolations to the CBS limit.
A detailed description of various possible CBS extrapolations
of results obtained with sequences of basis sets differing in the
cardinal numberX has been presented in ref 29. In this work,
we have used two kinds of extrapolation schemes, referred to
in ref 29 as theX-n extrapolation and theEH vs E (or EH(E))
extrapolation. Within theX-n scheme, it is assumed that the
difference between the CBS value of some energy contribution
E(∞) and its approximationE(X) computed using a basis set
with the cardinal numberX vanishes likeAX-n, whereA is a
constant. Various choices of the exponentn have been studied:
in this work, we employed theX-3 extrapolation, that is,n )
3. This choice is supported by rigorous theoretical derivations
in the case of atomic MP2 energies,72-74 as well as by extensive
numerical studies for molecules.75,76

The second class of extrapolations, denoted asEH vs E or
EH(E) in ref 29, approximates the CBS value of a hard-to-
calculate energy,EH, utilizing the convergence pattern of a
different energy contribution,E, which is easier to calculate
and for which the CBS limit is known to a good accuracy. This
extrapolation technique assumes that the quantitiesEH and E
exhibit the same convergence pattern whenX goes to infinity.
More precisely, one assumes that, for the sequenceBX of basis
sets employed,EH(BX) is a linear function ofE(BX). In our
case,E can be any contribution that we are able to calculate
using the Gaussian geminal basis sets. Because in our studyEH

will always be a correlation contribution,E should also result
entirely from electron correlation since the SCF energies exhibit
a completely different (exponential) convergence behavior in
X.77 We have employed asE three different quantities available
in our Gaussian geminal programs:

• the MP2 correlation energy for a single helium atom: the
resulting scheme will be referred to as an extrapolation versus
EA

MP2,cr (where A stands for monomer and “cr” reminds one
that only the correlation part of the MP2 energy is taken into
account)

• the correlation component of the MP2 interaction energy
of two helium atoms: the resulting scheme will be referred to
as an extrapolation versusEMP2

cr [recall that with the sub-
scripted symbols likeESCF or ECCD we denote the interaction
energies, while the superscipts are used for the total energies,
cf. eqs 1 and 5]

• the correlation component of the factorizable CCD interac-
tion energy of two helium atoms: the resulting scheme will be
referred to as an extrapolation versusEFCCD

cr .
The specific formulas for an approximationẼH(∞) to the CBS

limit of EH employing the valuesEH(X) andEH(X-1) calculated
in X-tuple zeta and (X-1)-tuple zeta basis sets, respectively,
are29,76

for the X-n extrapolation and

for the EH vs E extrapolation. It is worth noting that if the
differencesE(X) - E(∞) behave exactly asAX-n, the extrapola-
tion versusE is equivalent to theX-n extrapolation. This
observation explains the fact that the extrapolation versus
EA

MP2,cr usually performs very similarly to theX-3 extrapola-
tion: indeed, the MP2 correlation energy for the helium atom
converges to its CBS value in a nearly perfect accordance with
the X-3 law. It is also worth noting that the numerical values
of the coefficients multiplying the energy differences in eq 13
for n ) 3 range from 0.42 forX ) 3 through 1.05 forX ) 5 to
1.7 for X ) 7.

The contributionsENF, ES, andET have been calculated in
bases aXZb95 and dXZ for X ) 5, 6, and 7. The basis set
sequences aXZb95 and dXZ have been chosen as providing the
most reliable results based on the investigations of refs 29 and
30. The most expensive contribution, theδEFCI term, was
calculated using the same basis set sequences but withX ) 4,
5, and 6, that is, one cardinal number less than it was possible
for the lower-level contributions, but, at the same time, with
one cardinal number more than in refs 29 and 30. Because the
uncertainty ofδEFCI was the leading contribution to the total
uncertainty of the results reported in refs 29 and 30, the
availability of theδEFCI values calculated in sextuple-zeta basis
sets is the main reason for the higher accuracy achieved in the
present work.

III. Details of Computations

Calculations using the approach described in the previous
section have been performed for 12 internuclear distances:R
) 3.0, 3.5, 4.0, 4.5, 5.0, 5.3, 5.6, 6.0, 6.5, 7.0, 8.0, and 9.0
bohr. The contributions obtained by us atR ) 4.0, 5.6, and 7.0
bohr are generally different but very close to those previously
published in refs 29 and 30. The explicitly correlated calculations
at the FCCD level have been performed using the geminal
coupled-cluster code developed in our group.78 The orbital
values of the FCCD interaction energies, necessary for the

φR(r ) ) Π̂R∑
i)1

M

ci
R exp(-γi|r - Ci|2) (12)

ẼH(∞) ) EH(X) +
(1 - 1/X)n

1 - (1 - 1/X)n
(EH(X) - EH(X-1))

(13)

ẼH(∞) ) EH(X) +
E(∞) - E(X)

E(X) - E(X-1)
(EH(X) - EH(X-1))

(14)
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computation of theENF term, were obtained using a suitably
modified CCSD program from the SAPT suite of codes,79 based
on the implementation proposed in ref 80. The CCD, CCSD,
and CCSD(T) energies were calculated using the MOLPRO
package.81 Finally, the FCI interaction energies have been
obtained with the LUCIA program,52 modified by us to allow
for more than 255 basis functions and to reduce memory
requirements.

In all tables below, the distances are given in atomic units
and the energies in kelvins (the conversion factor 1 hartree)
315 774.65 K has been used).

To illustrate our extrapolation techniques, we will present
the results from all the basis sets at five internuclear distances:
3.0, 4.0, 5.6, 7.0, and 8.0 bohr. For the complete set of points,
only the final (extrapolated) values for all the components
appearing in eqs 1-7 will be given, along with the correspond-
ing uncertainties. The complete data for all the distances are
available as Supporting Information associated with this paper.

A. SCF Calculations. In ref 30, we noted that a systematic
nonlinear optimization of the SCF wave functions with floating
centers was not easy, which manifested itself in somewhat
irregular convergence patterns with respect to the expansion
length,M. Such patterns make precise extrapolations ofESCF

and EFCCD
cr to their M ) ∞ limits rather difficult. In fact, the

main source of the estimated error ofEFCCD
cr was the residual

inaccuracy of the SCF orbitals (rather than the inaccuracy of
the pair functions) at all three internuclear distances considered
in ref 30. The source of the problem is a tendency of the
optimization process to lower the total SCF energy of the dimer
by improving the description of the orbitals in the vinicity of
nuclei rather than in the region between the nuclei important
for the interaction energies.

To address this problem, in the present work we used a new
strategy for the SCF wave function optimization. The basis
functions in the expansion of eq 12 were divided into two
subsets withM1 andM2 ) M - M1 terms, respectively. Note
that we are counting the symmetry-adapted basis functions. The
M1 functions from the first subset were located at the nuclei
and their exponents were thoroughly optimized on the SCF
energy of the helium atom. TheseM1 terms were kept frozen
in further calculations, while the nonlinear parameters in the
remainingM2 terms (exponents and centers), as well as all the
M linear parametersci

R, were optimized by minimizing the
SCF energy for the dimer. We carefully optimized a 24-term
helium atom SCF orbital, obtaining an error of only 0.089 mK
for the sum of the two monomer SCF energies, and used the
resulting exponents for the first subset. The near-saturation of
the monomer description ensures that the optimization of the
remainingM2 exponents in the basis is almost entirely directed
toward the interaction energy, which now converges fairly
smoothly withM2. The only disadvantage of this approach is
the fact that the resulting SCF expansions are somewhat longer
than those obtained when all nonlinear parameters were
optimized on the dimer SCF energy. Therefore, in the time-
consuming optimizations of the GTG pair functions of eq 10,
the SCF functions of ref 30 withM ) 16 andM ) 24 were
used. This is a reasonable procedure since at the optimization
stage the accuracy of the SCF orbitals is less critical.

Table 1 contains the SCF interaction energies,ESCF, as
functions ofM2. The convergence is very fast and, except for
the three shortest distances (see the extended table in Supporting
Information), the last two results agree to at least 10-5 K.
Whenever this was the case, we assumed theM2 ) 16 result to
represent the basis set limit and the uncertainty of this value

was taken to be 10-5 K (a lower uncertainty neither is needed
nor can be safely assumed due to restrictions of numerical
precision). In the other cases, the limit was estimated as

where the numbers in parentheses denote the value ofM2. The
error of such an estimation was taken as

As it is known,77,82 the SCF energies converge exponentially
with the basis set size. This means that if the values ofM2 form
an arithmetic sequence with a step∆M2, one should observe
the energy increments to form a geometric sequence with a
quotient eR∆M2, whereR is a constant. Formula 15 corresponds
to the assumption that with∆M2 ) 4, the quotient is1/2. In
fact, the convergence for the three shortest distances is faster
than this since the ratio of the differencesESCF(16) - ESCF(12)
andESCF(12)- ESCF(8) is at most1/3 (see all the short distances
in Table 1 of Supporting Information). Therefore, the extrapola-
tion scheme of eq 15 overshoots, and eq 16 gives error estimates
that are probably too conservative. However, since these
estimates are anyway much tighter than the uncertainties of all
the other components of the potential, we have not tried more
sophisticated extrapolations.

The present results can be compared atR ) 4, 5.6, and 7
bohr to those from ref 30. One can see that the final values
from Table 5 of ref 30 agree to within their error bars with the
present limits. In fact, all the discrepancies amount to only one
in the last place given there, for example, to 0.1 mK atR ) 5.6
bohr. Table 1 of ref 30, which lists more digits, shows that the
agreement is even better, for example, to within 0.02 mK atR
) 5.6 bohr. The estimated uncertainties ofESCF from ref 30
have been drastically reduced by the present work, by a factor
of 10 atR ) 5.6 and 7.0 bohr and a factor of over 30 atR )
4.0 bohr. The reason the error bars were overestimated in ref
30 was an erratic convergence ofESCF. We now see that the
results obtained with the largest basis sets were more accurate
than the convergence had indicated. In contrast, the current
optimizations converge very fast and, with minor exceptions,
smoothly. Clearly, the new strategy works better than the
previous one. One has to remember, however, that some of the
improvement is due to larger sizes of the basis sets used here:
the largest basis set used in ref 30 containedM ) 32 symmetry-
adapted functions, the same number as the smallest,M2 ) 8,
basis set used here. However, for all three distances, the current
M ) 32 SCF energies are more accurate than those obtained in
ref 30 with basis sets of the same size.

TABLE 1: Convergence of the SCF Interaction Energies,
ESCF, with the Size of the Interaction Part of the Basis Set,
M2

a

R

M2 3.0 4.0 5.6 7.0 8.0

8 4268.36201 428.783021 9.219985 0.287971 0.023266
12 4268.35474 428.782585 9.219982 0.287971 0.023263
16 4268.35229 428.782553 9.219982 0.287971 0.023266

extr. 4268.3498 428.78252 9.21998 0.28797 0.02327
σb 0.0025 0.00003 0.00001 0.00001 0.00001

a The total SCF basis set contains alsoM1 ) 24 terms taken from
an accurate helium atom orbital.b The estimated uncertainty of the
extrapolated result, see the text.

ESCF(∞) ) ESCF(16) + [ESCF(16) - ESCF(12)] (15)

σSCF) |ESCF(16) - ESCF(12)| (16)
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B. GTG Calculations. To evaluate theEFCCD
cr energies, we

optimized, at each value ofR, pair functions with three
expansion lengths:K ) 300, 600, and 800. The results for
different values ofK andM2 are listed in Table 2. To estimate
the limits, we used observations from our extensive tests
reported in ref 30. One of these observations was that the errors
associated with the pair function expansion and the SCF function
expansion are practically independent; that is, the difference
EFCCD

cr (K,M2) - EFCCD
cr (K′,M2) does not depend on the value of

M2. Therefore, the limit values for expansion lengths going to
infinity can be calculated independently and the resulting
increments added to the best computed energy. In calculations
of ref 30, the length of the expansion used for the SCF orbital
had a small but significant effect onEFCCD

cr : the contribution to
the estimated uncertainty of the final value coming from this
source was 0.15 mK atR ) 5.6 bohr. The results presented in
Table 2 (and in the Supporting Information) show that with our
new expansions these errors are negligible: atR ) 5.6 bohr,
theEFCCD

cr energy does not change on the microkelvin place as
M2 changes from 8 to 16. In fact, for all distances larger or
equal 5.3 bohr, the variations are within a few microkelvin. For
the smallest separation considered, the increments are about 1
mK and remain negligible relative to the total interaction energy.
In view of this behavior, investigated forK ) 300, we have
performed the calculations for largerK using onlyM2 ) 8. We
have then added to the value computed withK ) 800 the
differenceEFCCD

cr (300,16)- EFCCD
cr (300,8). Since this term is

nearly negligible, we have not included any contribution due
to the SCF basis set truncation in the estimation of the
uncertainty ofEFCCD

cr .
The other important observation made in ref 30 was that the

convergence ofEFCCD
cr in K resulted in a reduction of the error

by a constant factor when the size of the geminal basis set was
doubled. This means that the energies change approximately
as

For R ) 5.6 bohr, the data of Table 2 are recovered withE∞ )
-18.211 846 K andγ ) 2.1. The CBS limit can also be
approximated by just adding the differenceE800 - E600 to E800,
resulting in the value ofE∞ ) -18.211 777 K, only 0.069 mK
different from the more sophisticated estimate. This simple
approximation is, in fact, exact forγ ) 2.4. For the other values
of R, γ ranges from 2.9 to 4.7 (forR ) 9.0 bohr,γ could not
be determined, see below). Thus, the simple estimate probably
overshoots the exact magnitude ofEFCCD

cr for these distances.
Nevertheless, we have adopted this method to obtain CBS limits
for all R. To account for the overshot, we have used the
difference|E800 - E600| as our estimate of the uncertainty of
EFCCD

cr . Since the uncertainties ofEFCCD
cr are negligible com-

pared with those of some other components, more sophisticated

extrapolations ofEFCCD
cr would be inconsequential for the final

results. This method of obtaining the CBS limit is the same as
that used in ref 30 (note that the quantity∆EK defined in ref 30
was twice the differenceE800 - E600). In summary, our best,
recommended values ofEFCCD

cr were computed from the for-
mula

and the uncertainties of these values were assumed to be given
by

The only exception isR ) 9.0 bohr, where our (300,8), (600,8),
and (800,8) results are very close to each other but not
monotonic: -0.892 925, -0.892 985, and-0.892 954 K,
respectively. We chose the point halfway between the last two
results and the difference of the last two results as our
recommended value and its uncertainty:-0.892 97( 0.000 03
K.

The current extrapolated results are fully consistent (i.e., well
within the error bars) with those given in ref 30 forR ) 4.0,
5.6, and 7.0 bohr but have smaller uncertainties due to the better
saturation of the SCF functions in the current work. In particular,
at R ) 5.6 bohr, the new result of-18.211 78( 0.000 32 K
can be compared with the old value of-18.211 91( 0.000 47
K.

C. Orbital Calculations. 1. ENF. In ref 30, the recommended
values of the nonfactorizable CCD contribution,ENF, were
computed in the geminal approach. Orbital calculations of the
same quantity gave very close results already in the aXZ
sequence ending atX ) 6. The agreement was so close that
there was no need for using larger basis sets. On the basis of
these findings, we have computed here the values ofENF using
only orbital bases. For consistency with other components, we
have used the dXZ and aXZb95 sequences of basis sets,X ) 5,
6, and 7. The results of these calculations, as well as theX-3-
extrapolated energies, are presented in Table 3. The FCCD
iterations atR < 5.0 bohr diverged for the a7Zb95 basis set, so
the extrapolations at those distances are based only on theX )
5 andX ) 6 values. As seen in Table 3,ENF converges very
fast with respect to the basis set size, and the absolute uncertainty
of this term, unlike the uncertainties of the other orbital
contributions discussed below, is smaller than the estimated error
of the geminal FCCD calculations. TheX-3 extrapolations from
the dXZ and aXZb95 basis set families, denoted by a(X-1,X)
and d(X-1,X), respectively, give almost identical results. In fact,
for R larger than 5.6 bohr, the CBS extrapolations are not really
necessary since the results forX ) 7 are already converged to
within 0.01 mK. It is gratifying to find out that the extended

TABLE 2: Convergence of the Correlation Part of the FCCD Interaction Energies,EFCCD
cr , with the Pair Function Length,

K, and with the Size of the Interaction Part of the SCF Basis Set,M2

R

K, M2 3.0 4.0 5.6 7.0 8.0

300, 8 -461.91046 -123.58201 -18.208804 -4.418319 -1.881085
300, 12 -461.91093 -123.58209 -18.208804 -4.418319 -1.881085
300, 16 -461.91139 -123.58208 -18.208804 -4.418319 -1.881092
600, 8 -461.96090 -123.59598 -18.211131 -4.419708 -1.881622
800, 8 -461.96408 -123.59697 -18.211454 -4.419768 -1.881644

extr. -461.9682 -123.5980 -18.21178 -4.41983 -1.88167
σ 0.0032 0.0010 0.00032 0.00006 0.00002

EK ) E∞ + A/Kγ (17)

EFCCD
cr (∞,∞) ) EFCCD

cr (800,8)+ [EFCCD
cr (300,16)-

EFCCD
cr (300,8)]+ [EFCCD

cr (800,8)- EFCCD
cr (600,8)] (18)

σFCCD ) |EFCCD
cr (800,8)- EFCCD

cr (600,8)| (19)
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orbital basis sets used in the present work and the application
of extrapolations improved the agreement of the orbital and
geminal values ofENF in comparison to that achieved in ref
30: the relevant differences are now reduced from 1.32 and
0.03 mK to 0.11 and 0.02 mK forR ) 4 and 5.6 bohr,
respectively (and are unchanged atR ) 7 bohr). Although
discrepancies of this size are not relevant for the current
potential, their decrease confirms the very high quality of
geminal CCD calculations. Since the extrapolated results from
the aXZb95 sequence are closest to the geminal ones, we will
use them as the recommended values. The error estimatesσ
for ENF were obtained as the differences between the a(56) and
a(67) extrapolations. If this difference was less or equal 0.01
mK, we assumedσ ) 0.01 mK. ForR smaller than or equal to
4.5 bohr, where the a7Zb95 calculations did not converge, we
have used the difference between the a(56) and d(67) extrapola-
tions.

2. ES. In ref 30, the contribution of the single excitations to
the interaction energy,ES, was computed forR ) 4.0, 5.6, and
7.0 bohr using both geminal and orbital basis sets. In the present
work, the calculations have been extended to other distances,
but only using the orbital approach with the dXZ and aXZb95
sequences of basis sets up toX ) 7. Therefore, for the distances
included in ref 30, we do not present any new results (except
for some additional extrapolations). Accordingly, the estimates
of ES and their uncertainties proposed in ref 30 will remain
unchanged for these distances. We now have to answer the
question of how to estimate these values for otherR, based on
the restricted set of numerical data available. To improve the
predictions, we have tested a broader range of extrapolation
techniques than in refs 29 and 30. The computed and extrapo-
lated values ofES are shown in Table 4.

For the distances larger than 6.5 bohr, the MP2 interaction
energies calculated in bases d6Z and d7Z are extremely close
to each other. The same is true for the FCCD energies. Conse-
quently, some of the results extrapolated versusEMP2

cr and
EFCCD

cr using these two bases were completely unphysical due
to subtractions in eq 14 leaving insufficient number of significant
digits, and we had to list for these distances the results
extrapolated from bases d5Z and d6Z, as noted in the tables.

The a(67) and d(67) extrapolations agree well with the values
recommended in ref 30, their average being within the error

bars of ref 30 for all three separations. Although these (67)-
level extrapolated results were included in the CBS limit
procedure of ref 30, there was a large number of other data
contributing as well (in particular the geminal results were
heavily weighted) so that such agreement could not be taken
for granted. The results of the three other extrapolations, namely,
the extrapolations versusEA

MP2,cr, EMP2
cr , and EFCCD

cr , are much
worse, resulting in the magnitudes ofES generally smaller than
the recommended values from ref 30. For example, forR )
5.6 bohr, these three schemes give the values ofES between
172.0 and 176.8 mK, compared with the recommended limit
of 177.1( 0.5 mK.30 These findings agree with the observations
of refs 29 and 30 concerning the extrapolations versusECCD

andECCD
cr , which also performed worse than theX-3 extrapo-

lations. Based on this evidence, we have not used the extrapola-
tions versusEA

MP2,cr, EMP2
cr , andEFCCD

cr in determining the limit
values ofES but relied exclusively on theX-3 extrapolations,
taking the average of the a(67) and d(67) extrapolations as our
best estimate ofES.

The (67)-level extrapolated results from the dXZ and aXZb95
sequences are very close to each other for allR. Thus, their
difference cannot be used as a measure of the uncertainties of
ES. Therefore, we decided to use the difference between the
average values from the (56) and (67) extrapolations as such a
measure. This procedure gives forR ) 4.0, 5.6, and 7.0 bohr,
respectively,-0.732( 0.009,-0.1767( 0.0009, and-0.04412
( 0.00032 K, which can be compared with the corresponding
values from ref 30 (our recommended values) amounting to
-0.734( 0.002,-0.1771( 0.0005, and-0.0442( 0.0005
K. This agreement is quite satisfactory, and we believe that our
orbital-only-based predictions will perform equally well for other
R.

In ref 29, it has been observed that the use of bond functions
does not lead to improved predictions for the single-excitations
contribution. Our present results confirm this observation, as
the results of both the calculated and extrapolated values from
the dXZ sequence appear to be slightly more accurate than those
from the aXZb95 sequence. However, the differences are very
small, so one can say that the use of bond functions is not
counterproductive.

3. ET. For the noniterative triple-excitation contribution,ET,
there are no geminal results to guide us in choosing the best
way of estimating the limit values. At the same time, since this
contribution is by far the largest one calculated using only orbital
basis sets, its reliable CBS extrapolation is crucial for the
accuracy of the total interatomic potential. The most accurate
calculation of theET contribution has been reported in refs 29
and 30 for the interatomic separation of 5.6 bohr. This
calculation employed the sequence dXZb135, where b135
denotes a 6s6p6d3f3g3h set of midbond functions developed
in ref 71, with the largestX ) 7 basis containing 611 functions
(the largest basis used in the present work, d7Z, contains 476
orbitals). We will therefore reanalyze the dXZb135 results and
assume the limit predicted by this sequence as the best estimate
of ET. Subsequently, we will try to get as close as possible to
this estimate using only the information given by the dXZ and
aXZb95 sequences.

TheET energies computed using the sequence dXZb135 are
presented in Table 5. We have not performed FCCD calculations
for this sequence, so instead of the extrapolations vsEFCCD

cr , we
present ones vsECCD

cr , which should give nearly identical
results. One should note first that already the computed energies
for high X provide a good approximation toET, amounting to
-1.530 K for X ) 7. Next, all the extrapolations give results

TABLE 3: Dependence of the Nonfactorizable CCD
Contribution, ENF ) ECCD - EFCCD, on the Orbital Basis Seta

R

X 3.0 4.0 5.6 7.0 8.0

dXZ bases
5 1.17264 0.48913 0.01819 -0.00340 -0.00224
6 1.16992 0.48846 0.01819 -0.00339 -0.00224
7 1.16858 0.48807 0.01819 -0.00339 -0.00224
d(56) 1.16618 0.48754 0.01820 -0.00338 -0.00223
d(67) 1.16631 0.48741 0.01819 -0.00338 -0.00223

aXZb95 bases
5 1.17149 0.48914 0.01824 -0.00340 -0.00224
6 1.16943 0.48836 0.01820b -0.00339 -0.00224
7 0.01820b -0.00339 -0.00224
a(56) 1.16660 0.48729 0.01816 -0.00338 -0.00223
a(67) 0.01818b -0.00338 -0.00223
σc 0.00029 0.00013 0.00003 0.00001 0.00001

a The empty places are due to the divergence of the FCCD iterations.
b With one more significant digit, theseX ) 6, X ) 7, and a(67) results
amount to 0.018202, 0.018195, and 0.018183, respectively.c The
estimated uncertainty (see text) of the value ofENF obtained from the
a(67) extrapolation (when available, otherwise from the a(56) extrapola-
tion).
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very close to each other, in the range-1.533 to-1.536 K.
The average of the four (67)-level extrapolations is-1.534 61
K, in excellent agreement with the recommended value ofET

from refs 29 and 30 equal to-1.535( 0.002 K. This average
differs at the most by 0.0011 K from the individual extrapolated
results. Thus, we will adoptET ) -1.5346( 0.0011 K as our
best estimate forR ) 5.6 bohr.

The computed and extrapolated values ofET in the dXZ and
aXZb95 sequences forR) 3, 4, 5.6, 7, and 8 bohr are presented
in Table 6. ForR ) 5.6 bohr, we have tried several methods of
averaging these results. The result closest to the one inferred
from the dXZb135 sequence was obtained by considering all
eight results extrapolated from theX ) 6,7 bases using theX-3,
vs EA

MP2,cr, vs EMP2
cr , and vs EFCCD

cr schemes and taking the
midpoint of the range spanned by these results. We will use
this number as our recommended value ofET and half of the
width of the range as the uncertaintyσ. This procedure gives
at R ) 5.6 bohrET ) -1.5344( 0.0018 K, in good agreement
with the best estimate listed above and with the estimate of
refs 29 and 30. ForR ) 8.0 and 9.0, we had to employ for the
ET vs EMP2

cr and ET vs EFCCD
cr extrapolations the results calcu-

lated in bases d5Z and d6Z instead of d6Z and d7Z since the
latter choice led to unreasonable values of some extrapolated
energies, for the same reasons as in the case of the single-
excitation contribution. For the aXZb95 sequence, there were
no such problems.

In refs 29 and 30, it has been observed that the extrapolations
of ET from the bases containing bond functions appear to work
better than those without such functions. This observation is
confirmed by theR ) 5.6 results in Table 6: the average of the
dXZ extrapolations, equal to-1.532 97 K, is farther from our
recommended value than the average of the aXZb95 extrapola-
tions equal to-1.534 50 K. Thus, another reasonable choice
for determining the CBS limits for otherR could be to base it
only on the aXZb95 sequence.

4. δEFCI. The values of the contributionδEFCI, collecting the
effect of the triple excitations beyond the CCSD(T) level and
the whole connected quadruple excitations effect, computed in
the dXZ and aXZb95 sequences of basis sets forX ) 4, 5, and
6, as well as the values ofδEFCI extrapolated to the CBS limit
using the same four schemes as forES andET, are presented in
Table 7. This contribution is obviously the most expensive one
both in terms of the CPU time and memory required, and its
calculation in X ) 7 basis sets is presently not feasible.
Nevertheless, the FCI calculations performed by us used basis
sets up to 349 functions (the a6Zb95 set), much larger than in
any earlier FCI calculation for the helium dimer, including our
previous work29,30 employing up to 255 basis functions (the
a5Zb95 set) and the calculations with bases up to 159 functions
published by van Mourik and van Lenthe.33 The total dimer
energy atR ) 5.6 bohr obtained in refs 33, 29, and the present
work is -5.805 755 67,-5.806 441 87, and-5.806 956 12
hartree, respectively. This can be compared with the lowest
variational energy of-5.807 483 584 hartree from the very
recent ECG calculation of ref 50. Thus, the error of the total
energy has been reduced almost four times relative to ref 33.
The values ofEFCI from the same works are-10.947,-10.974,
and -10.983 K, about a factor of 3 reduction in the error
compared with our current recommended value (to be discussed
in the next section).

On the basis of the results from various Dunning-type basis
set sequences restricted toX e 5 (except the aXZ sequence used
up toX ) 6) and from some interaction-energy optimized basis
sets, the authors of refs 29 and 30 could not consider the
extrapolations to be reliable due to a significant spread of the
extrapolated values. ForR ) 5.6 bohr, the values ofδEFCI

computed in the largest basis sets, containing between 210 and
255 orbitals, ranged from-321 to -328 mK, whereas the
extrapolated results ranged from-318 to -324 mK. The
recommended best estimate ofδEFCI was chosen as-323( 5
mK, to cover both ranges. With theX ) 6 results now available,
the conclusions from Table 7 are more clear, at least for larger
distances. In all cases, the computed values ofδEFCI increase
monotonically withX (i.e., become less negative). AtR ) 5.6
bohr, the computed values in the d6Z basis (326 orbitals) and
a6Zb95 basis (349 orbitals) are-324 and-322 mK, respec-
tively. This suggests that the CBS limit should be still smaller
in magnitude, as indicated also by theX-3 extrapolations. These
extrapolations cover the range-318 to -321 mK, with the

TABLE 4: Dependence of the Singles Contribution,ES ) ECCSD - ECCD, on the Orbital Basis Seta

R

3.0
dXZ

3.0
aXZb95

4.0
dXZ

4.0
aXZb95

5.6
dXZ

5.6
aXZb95

7.0
dXZ

7.0
aXZb95

8.0
dXZ

8.0
aXZb95

X ) 5 -1.49256 -1.54718 -0.81271 -0.83777 -0.19417 -0.19860 -0.04949 -0.04992 -0.02032 -0.02038
X ) 6 -1.38990 -1.41495 -0.77635 -0.78789 -0.18675 -0.18868 -0.04707 -0.04736 -0.01922 -0.01929
X ) 7 -1.35172 -1.36353 -0.75992 -0.76712 -0.18300 -0.18425 -0.04593 -0.04621 -0.01869 -0.01881
(56) -1.24888 -1.23332 -0.72640 -0.71937 -0.17656 -0.17506 -0.04375 -0.04384 -0.01771 -0.01779
(67) -1.28678 -1.27608 -0.73198 -0.73179 -0.17662 -0.17672 -0.04399 -0.04425 -0.01779 -0.01799
ES(EA

MP2,cr) -1.28153 -1.26495 -0.72965 -0.72763 -0.17607 -0.17596 -0.04382 -0.04407 -0.01771 -0.01792
ES(EMP2

cr ) -1.28848 -1.24406 -0.73155 -0.71336 -0.17684 -0.17201 -0.04473e -0.04386 -0.01730e -0.01804
ES(EFCCD

cr ) -1.29373 -0.73372 -0.17677 -0.17435 -0.04491e -0.04457 -0.01749e -0.01819
ES

b -1.281 -0.734d -0.1771d -0.0442d -0.01789
σc 0.040 0.002d 0.0005d 0.0005d 0.00014

a The symbol (X - 1, X) is used here for both the a(X - 1, X) and d (X - 1,X) extrapolations. Unless otherwise noted, the extrapolations versus
EA

MP2,cr, EMP2
cr , andEFCCD

cr are based on the results obtained withX ) 6 andX ) 7 bases.b Our final approximations to the singles contribution to
the interaction energy, defined as average values of the (67) extrapolations.c The uncertainties ofES calculated as the differences between the
averages of the (56) and (67) extrapolations.d Result from ref 30, which includes both geminal and orbital CCSD energies. The purely orbital
results obtained using the method proposed in the present work (and employed for distances other than 4.0, 5.6, and 7.0 bohr) areES ) -0.732(
0.009,-0.1767( 0.0009, and-0.04412( 0.00032 K forR ) 4.0, 5.6, and 7.0 bohr, respectively.e Extrapolated from d5Z and d6Z bases. The
extrapolations from bases d6Z and d7Z were unreliable for this distance.

TABLE 5: Convergence of the Triple Excitations
Contribution, ET ) ECCSD(T) - ECCSD, for the dXZb135 Basis
Sets atR ) 5.6 bohr

X ET X-3 ET(EA
MP2,cr) ET(EMP2

cr ) ET(ECCD
cr )

4 -1.51541
5 -1.52380 -1.53260 -1.53286 -1.53632 -1.53469
6 -1.52757 -1.53275 -1.53308 -1.53503 -1.53422
7 -1.52985 -1.53372 -1.53411 -1.53569 -1.53491
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average of the (56)-level extrapolations equal to-318 mK.
Thus, we can now base our recommended values on the results
of extrapolations. However, theX-3-extrapolated values, simi-
larly to the computed results, tend to decrease in magnitude
with X, indicating that the convergence of theδEFCI contribution
deviates from theX-3 law. Thus, for this contribution the
inclusion of other types of extrapolations may be particularly
important. As shown in Table 7, atR ) 5.6 bohr, the results of
such extrapolations (of the same types as in the case of single
and triple excitations contributions) range from-316 to-321
mK, in a reasonable agreement with theX-3 predictions. We
have therefore determined the CBS limits and their error bars
in the same way as forET, that is, as the midpoint and half of
the width, respectively, of the range of all the (56) extrapola-
tions. At R ) 5.6 bohr, this leads toδEFCI ) -318.3( 2.8
mK, as much as 5 mK higher than the value recommended in
ref 29, but within its error bars. Table 7 shows that the
recommended CBS values would be virtually identical if we
have taken them as the average of theX-3 extrapolations at the
(56) level, that is, only the a(56) and d(56) extrapolations. This
is an indication of the reliability of our recommended values.

One of the conclusions of ref 29 was that the bond functions
are inefficient or even counterproductive in recovering theδEFCI

contribution. This conclusion has to be somewhat revised since
Table 7 shows that theX-3 extrapolations from the aXZb95
sequence are only negligibly less accurate (relative to the
recommended values) than those from the dXZ sequence. Since
the aXZ sequence extrapolates to too negative values (ranging
from -323 to-324 mK29), supplementing this series with either
the second diffuse shell or the bond functions has practically
the same effect (at about the same costs).

We inspected theR dependence of the relative errors of the
orbital contributions computed by us. This dependence is rather
weak since none of these contributions goes through zero in
the considered range of distances. In relative terms, the most
accurate is theET contribution with errors of the order of 0.1%,
except forR ) 9 bohr where the error is somewhat larger
(0.3%). TheES and δEFCI contributions are significantly less
accurate with relative errors of the order of 0.5-1.0%, except
for the singles contribution atR) 3 bohr which has a 3% error.
These uncertainties are significantly larger than the uncertainties
of the correlation contribution at the CCD level, which has been
obtained with relative errors of the order of 0.001%.

D. Total Potential. As stated in the previous section, our
final supermolecular helium dimer interaction energies, which
will be used as the grid points for the potential fit,53 are the
sums of the terms listed in eq 7. The termESCF is calculated
using bases of floating spherical Gaussian orbitals,EFCCD

cr is
taken from Gaussian geminal calculations including simple
extrapolations,ENF is extrapolated from calculations in the
aXZb95 sequence of orbital bases usingX ) 6,7 and theX-3

scheme,ES is the average of the (67)-levelX-3 extrapolations
from the dXZ and aXZb95 sequences, andET and δEFCI are
obtained from extrapolations (each term separately) using the
sequences dXZ and aXZb95 with four extrapolation schemes
(at the (67) level forET and at the (56) level forδEFCI). The
recommended contributions are listed in Tables 8 and 9 for all
12 separations. The total helium dimer interaction energies
obtained in this way (Table 9), as well as their CCD-level (Table
8) and CCSD(T)-level (Table 9) approximations, are also

TABLE 6: Dependence of the Triple Excitations Contribution, ET ) ECCSD(T) - ECCSD, on the Orbital Basis Seta

R

3.0
dXZ

3.0
aXZb95

4.0
dXZ

4.0
aXZb95

5.6
dXZ

5.6
aXZb95

7.0
dXZ

7.0
aXZb95

8.0
dXZ

8.0
aXZb95

X ) 5 -32.51461 -32.93700 -10.24122 -10.39049 -1.50133 -1.52159 -0.35704 -0.35921 -0.15134 -0.15168
X ) 6 -32.88820 -33.06351 -10.35513 -10.42336 -1.51870 -1.52633 -0.35950 -0.36063 -0.15210 -0.15240
X ) 7 -33.06162 -33.14053 -10.40435 -10.44243 -1.52396 -1.52893 -0.36040 -0.36135 -0.15243 -0.15274
(56) -33.40137 -33.23729 -10.51160 -10.46851 -1.54256 -1.53284 -0.36288 -0.36258 -0.15314 -0.15339
(67) -33.35657 -33.27152 -10.48806 -10.47486 -1.53291 -1.53335 -0.36193 -0.36257 -0.15299 -0.15332
ET(EA

MP2,cr) -33.38046 -33.28819 -10.49504 -10.47868 -1.53368 -1.53379 -0.36206 -0.36269 -0.15304 -0.15337
ET(EMP2

cr ) -33.34887 -33.31948 -10.48933 -10.49179 -1.53260 -1.53612 -0.36291 -0.36282 -0.15343b -0.15328
ET(EFCCD

cr ) -33.32504 -10.48285 -1.53270 -1.53474 -0.36305 -0.36238 -0.15329b -0.15318
ET -33.326 -10.485 -1.5346c -0.36249 -0.15321
σ 0.054 0.010 0.0011c 0.00056 0.00022

a The notation is similar to that of Tables 3 and 4. The bold numbers are those that determine the ranges for the recommended results; see text.
b Extrapolated from d5Z and d6Z bases. The extrapolations from bases d6Z and d7Z were unreliable for this distance.c Extrapolated from the
dXZb135 sequence; see text. The value obtained using the method proposed in the present work is-1.5344( 0.0018 K.

TABLE 7: Dependence of the Contribution beyond the CCSD(T) Level,δEFCI ) EFCI - ECCSD(T), on the Orbital Basis Seta

R

3.0
dXZ

3.0
aXZb95

4.0
dXZ

4.0
aXZb95

5.6
dXZ

5.6
aXZb95

7.0
dXZ

7.0
aXZb95

8.0
dXZ

8.0
aXZb95

X ) 4 -5.77084 -5.54987 -2.02626 -1.96790 -0.33357 -0.33120 -0.08430 -0.08425 -0.03647 -0.03643
X ) 5 -5.55905 -5.44215 -1.97039 -1.93384 -0.32758 -0.32525 -0.08266 -0.08264 -0.03576 -0.03576
X ) 6 -5.42732 -5.37349 -1.93395 -1.91285 -0.32372 -0.32208 -0.08186 -0.08185 -0.03541 -0.03543
(45) -5.33684 -5.32913 -1.91177 -1.89810 -0.32130 -0.31901 -0.08094 -0.08095 -0.03502 -0.03506
(56) -5.24637 -5.27918 -1.88390 -1.88402 -0.31842 -0.31772 -0.08076 -0.08076 -0.03493 -0.03498
δEFCI(EA

MP2,cr) -5.23981 -5.26983 -1.88214 -1.88201 -0.31822 -0.31746 -0.08072 -0.08071 -0.03491 -0.03496
δEFCI(EMP2

cr ) -5.25955 -5.24506 -1.88592 -1.87200 -0.32050 -0.31552 -0.08109 -0.08053 -0.03480 -0.03506
δEFCI(EFCCD

cr ) -5.28070 -5.25869 -1.89350 -1.87808 -0.32118 -0.31659 -0.08115 -0.08083 -0.03486 -0.03512
δEFCI -5.260 -1.883 -0.3183 -0.08084 -0.03496
σ 0.020 0.011 0.0028 0.00031 0.00016

a The notation is similar to that of Table 6.
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presented, together with their estimated uncertaintiesσ obtained
by quadratically adding the uncertainties of the contributions,

and similarly forECCD andECCSD(T). This formula for the total
uncertainty is consistent with the conventional scheme of adding
experimental uncertainties. The uncertainties ofEint defined in
this way, listed in Table 9, are significantly smaller than the
uncertainties reported in refs 29 and 30 forR ) 4.0, 5.6, and
7.0 bohr. For example, the interaction energy atR ) 5.6 bohr
obtained in this work is equal to-11.0037 ( 0.0031 K,
compared with the value-11.009( 0.008 K recommended in
ref 30. One of the reasons is that uncertainties of several
contributions have been decreased in the present work. In
particular, atR ) 5.6 bohr, the uncertainties ofEFCCD

cr , ET, and

δEFCI have been reduced from 0.47 to 0.32 mK, from 2 to
1.2 mK, and from 5 to 2.8 mK, respectively. However, another
significant decrease results from the fact that in refs 29 and 30
the uncertainties were added linearly, rather than quadratically
(with errors added linearly, our current result would have been
-11.0037 ( 0.0049 K). With the use of eq 20, our total
uncertainties should be viewed more like standard deviations
obtained in experimental measurements rather than more or less
rigorous bounds for the interval in which the true interaction
energy lies.

Since the interaction energies computed using the FCI method
are fairly accurate, one may wonder how good would be
predictions based only on our FCI calculations. Table 10 shows
the results of FCI calculations and extrapolations using the same
extrapolations schemes as discussed above. Since the dXZ and
aXZb95 sequences give dramatically different results, the

TABLE 8: Contributions to the Interaction Energies up to the CCD Level (Extrapolated to the CBS Limits) and Their
Corresponding Uncertainties,σ

R ESCF σ EFCCD
cr σ ENF σ ECCD σ

3.0 4268.3498 0.0025 -461.9682 0.0032 1.16660 0.00029 3807.5482 0.0041
3.5 1369.12255 0.00013 -236.1091 0.0017 0.88767 0.00009 1133.9011 0.0017
4.0 428.78252 0.00003 -123.5980 0.0010 0.48729 0.00013 305.6718 0.0010
4.5 131.53383 0.00001 -66.1020 0.0011 0.21745 0.00009 65.6493 0.0011
5.0 39.64473 0.00001 -36.17927 0.00023 0.08152 0.00007 3.54698 0.00024
5.3 19.16486 0.00001 -25.52899 0.00024 0.04093 0.00005 -6.32320 0.00025
5.6 9.21998 0.00001 -18.21178 0.00032 0.01818 0.00003 -8.97362 0.00032
6.0 3.45233 0.00001 -11.82323 0.00017 0.00365 0.00001 -8.36725 0.00017
6.5 1.00165 0.00001 -7.10599 0.00022 -0.00239 0.00001 -6.10673 0.00022
7.0 0.28797 0.00001 -4.41983 0.00006 -0.00338 0.00001 -4.13524 0.00006
8.0 0.02327 0.00001 -1.88167 0.00002 -0.00223 0.00001 -1.86063 0.00002
9.0 0.00183 0.00001 -0.89297 0.00003 -0.00119 0.00001 -0.89233 0.00003

TABLE 9: The Contributions beyond the CCD Level (Extrapolated to the CBS Limits), the Total Interaction Energies,Eint,
and the Estimated Uncertainties,σ, of These Quantities

R ES σ ET σ ECCSD(T) σ δEFCI σ Eint σ

3.0 -1.281 0.040 -33.326 0.054 3772.941 0.068 -5.260 0.020 3767.681 0.071
3.5 -0.982 0.010 -19.040 0.023 1113.879 0.025 -3.230 0.013 1110.649 0.028
4.0 -0.734a 0.002a -10.485 0.010 294.453 0.010 -1.883 0.011 292.570 0.015
4.5 -0.497 0.004 -5.681 0.005 59.470 0.006 -1.074 0.008 58.397 0.010
5.0 -0.3175 0.0018 -3.0929 0.0031 0.1366 0.0036 -0.6120 0.0055 -0.4754 0.0065
5.3 -0.2379 0.0012 -2.1673 0.0024 -8.7284 0.0027 -0.4397 0.0040 -9.1681 0.0048
5.6 -0.1771a 0.0005a -1.5346b 0.0011b -10.6853 0.0013 -0.3183 0.0028 -11.0037 0.0031
6.0 -0.1182 0.0006 -0.9863 0.0013 -9.4718 0.0014 -0.2101 0.0017 -9.6819 0.0023
6.5 -0.07173 0.00046 -0.58681 0.00078 -6.76527 0.00093 -0.12832 0.00082 -6.89359 0.00124
7.0 -0.0442a 0.0005a -0.36249 0.00056 -4.54193 0.00075 -0.08084 0.00031 -4.62277 0.00081
8.0 -0.01789 0.00014 -0.15321 0.00022 -2.03173 0.00026 -0.03496 0.00016 -2.06669 0.00031
9.0 -0.00807 0.00006 -0.07267 0.00021 -0.97308 0.00022 -0.01669 0.00016 -0.98977 0.00028

a Values from refs 29 and 30.b Extrapolated from the dXZb135 sequence; see text.

TABLE 10: Extrapolations of the FCI Correlation Contribution to the Interaction Energy, EFCI
cr ) EFCI - ESCF

R

3.0
dXZ

3.0
aXZb95

4.0
dXZ

4.0
aXZb95

5.6
dXZ

5.6
aXZb95

7.0
dXZ

7.0
aXZb95

8.0
dXZ

8.0
aXZb95

X ) 4 -469.41587 -487.38951 -128.78287 -134.27751 -19.57885 -20.18599 -4.85671 -4.91464 -2.08045 -2.09092
X ) 5 -487.28567 -493.44511 -133.30156 -135.14325 -19.96284 -20.19617 -4.88607 -4.90996 -2.08494 -2.08884
X ) 6 -493.61586 -496.09663 -134.68537 -135.53056 -20.12207 -20.20355 -4.89922 -4.91022 -2.08673 -2.08964
(45) -506.03431 -499.79853 -138.04248 -136.05157 -20.36571 -20.20685 -4.91687 -4.90505 -2.08965 -2.08666
(56) -502.31118 -499.73883 -136.58621 -136.06258 -20.34079 -20.21369 -4.91728 -4.91058 -2.08919 -2.09074
EFCI

cr (EA
MP2,cr) -502.62666 -500.09972 -136.65303 -136.09969 -20.34876 -20.21429 -4.91795 -4.91060 -2.08928 -2.09079

EFCI
cr (EMP2

cr ) -501.67797 -501.05619 -136.50925 -136.28436 -20.25474 -20.21881 -4.91193 -4.91065 -2.08986 -2.09053
EFCI

cr (EFCCD
cr ) -500.66164 -500.52993 -136.22132 -136.17207 -20.22675 -20.21630 -4.91095 -4.91056 -2.08954 -2.09038

EFCI
cr -501.644 -500.398 -136.437 -136.173 -20.2878 -20.2162 -4.91445 -4.91060 -2.08952 -2.09058

σ 0.983 0.659 0.216 0.111 0.0610 0.0026 0.00350 0.00005 0.00034 0.00021
EFCI

a 3766.752 3767.999 292.362 292.615 -11.0675 -10.9961 -4.62636 -4.62260 -2.06622 -2.06731

a The total FCI interaction energies were obtained by addingESCF computed inX ) 6 bases.

σ2(Eint) ) σSCF
2 + σFCCD

2 + σNF
2 + σS

2 + σT
2 + σFCI

2

(20)
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recommended values ofEFCI
cr and their uncertainties were

computed separately for each sequence as the midpoint of the
range spanned by all four extrapolations fromX ) 5 and 6 and
half of this range, respectively. As one can see in Table 10, the
interaction energies extrapolated from the aXZb95 sequence are
very accurate. AtR ) 5.6 bohr, the error compared to our best
value is only 7.6 mK or 0.08%. However, the estimated
uncertainty of this result, amounting to 2.6 mK, is too small.
At R ) 3.0 bohr, the agreement is even better as the relative
discrepancy is only 0.008% and the error estimate is now
consistent with the accurate value. Thus, although the FCI
calculations constituted a major part of computer costs in the
present work, such calculations by themselves would lead to a
significantly less accurate potential than that presented in Table
9. In contrast to the aXZb95 sequence, the predictions from the
dXZ sequence are poor. In particular, the error atR ) 5.6 bohr
is as large as 64 mK. Only at very small and very largeR, where
the effects of midbond functions become negligible, the predic-
tions of this sequence are comparable to those from aXZb95.
Since the two sequences performed comparably for theδEFCI

contribution, the difficult to extrapolate component is probably
contained inEFCCD

cr . The use of midbond functions alleviates
this difficulty fairly effectively.

IV. Comparison with Literature and Conclusions.

The present work reports a calculation of interaction energies
for the helium dimer using the CCSD(T) and FCI methods for
R ranging from 3.0 to 9.0 bohr. Some results atR ) 4.0, 5.6,
and 7.0 bohr were taken from refs 29 and 30. The present
calculations introduced several improvements to the method
developed in refs 29 and 30. These methods are based on
optimized floating Gaussian orbitals at the SCF level, optimized
Gaussian geminals up to the FCCD level, and extrapolated
orbital calculations beyond the FCCD level. ForR ) 4.0, 5.6,
and 7.0 bohr, also geminal calculations up to the CCSD level
performed in refs 29, 30 contributed to the present results. We
found it advantageous to combine these very different tech-
niques, and we expect similar schemes to be universally
applicable to very high-accuracy calculations on small and
medium-size systems.

The method was applied to nine new separations in addition
to the three considered before in refs 29 and 30. For the three
distances considered in ref 30, the calculations have been
improved and the error bars have been significantly reduced.
For example, atR ) 5.6 bohr, these bars were reduced from 8
to 3.1 mK. The reduction of errors results partly from a more
realistic, quadratic summation of errors and partly from more
accurate predictions of the post-CCSD(T) effects. We were now
able to use theX ) 6 basis sets in the FCI calculations, which
lowered the uncertainty of this part of the interaction energy,
δEFCI, from 5 to 2.8 mK at 5.6 bohr. While in the calculations
of ref 30 the uncertainty ofδEFCI strongly dominated the overall
uncertainty of the interaction energies, now this uncertainty is
more comparable to the ones for the other two slowly convergent
orbital contributions,ES and ET. Another change in our
calculation scheme is relying only on extrapolated orbital values
of the termsENF and (for the distances not considered in ref
30) ES. In the first case, the reason is that the nonfactorizable
term converges extremely well, and in the present work, we
used larger basis sets than before (X ) 7 vsX ) 6) to completely
saturate this component without using geminal results. In the
second case, we did not use our GTG CCSD program to
calculate the effect of the single excitations for purely economi-
cal reasons. The calculation of saturated geminal CCSD energies

(with the same quality as those obtained in ref 30 for three
distances) for the whole potential, while certainly feasible, would
be very expensive and would not reduce significantly the overall
error bars. For example, at 5.6 bohr, taking the GTG/orbital
value of ES from ref 30 yields the total uncertainty of the
potentialσ ) 3.1 mK (our recommended result), while using
instead the extrapolated orbital-only value (see footnote to Table
4) results inσ ) 3.2 mK.

The relative accuracy of the present interaction energies is
about 0.03% or better for the attractive part of the potential
and as high as 0.002% on the repulsive wall atR ) 3.0 bohr.
An obvious exception is the weakly repulsive region aroundR
) 5.0 bohr where the potential goes through zero. In this region,
the absolute error is about 7 mK, only twice as large as that at
the well minimum.

We have used several methods to extrapolate the orbital
calculations. Whereas the choices of the methods are to some
extent arbitrary, our recommended results are based on several
types of extrapolations and the uncertainties are determined by
the spread of the extrapolated results. This should make our
final interaction energies fairly independent of the types of the
extrapolations chosen. On the other hand, our error estimates
may be somewhat too large. It is possible that a more detailed
analysis of the convergence patterns inX may lead to a decrease
of these estimates.

A detailed comparison with other high-qualityab initio
interaction energies for the helium dimer was presented in ref
30. Therefore, in the present work we concentrate on new
results, which appeared after ref 30 was published. For the
equilibrium distance,R ) 5.6 bohr, there exists now an
improved upper bound to the interaction energy,-10.9985 K,50

obtained from four-electron “monomer contracted” ECG cal-
culations. Very recent unpublished calculations83 lowered it
further to -11.0003 K. Our present prediction,-11.0037(
0.0031K, is fully consistent with this upper bound. Let us further
note that for all the distances considered here, the upper bounds
given by Komasa49 are above our error bars. The same is true
in comparison to the significantly improved ECG upper bounds
from ref 51.

Recently, several points of the helium dimer potential were
calculated by Anderson39 using the exact (flexible nodes)
quantum Monte Carlo (QMC) method. These results, for the
three distances where a comparison is possible, are consistent
with ours, that is, the error bars overlap. AtR ) 5.6 bohr,
Anderson’s result of-10.998( 0.005 K has only slightly wider
error bars than ours. However, at 4.0 (9.0) bohr, our bars turn
out to be 13 (4) times narrower. The agreement with the 2001
Anderson’s results28 is not as good. At 3.0 bohr, the discrepancy
is 38 K, 1.5 times the QMC error bar. Our results are also
outside the QMC error bars at 5.6 and 9.0 bohr.

The present interaction energy atR ) 5.6 bohr is in good
agreement with the SAPT result from ref 53, equal to-11.000
( 0.011 K, although the estimated uncertainty of the latter result
is significantly larger. ForR ) 7.0 bohr and larger, the SAPT
uncertainties become, however, equal to or smaller than those
of the present work.

The results of the present work were combined with the
results of SAPT calculations in ref 53 to fit an analytic potential
for the helium dimer. This potential is much more accurate than
the widely used potential of refs 25 and 26 and is expected to
replace the latter. This potential approximates the helium-
helium interaction at the nonrelativistic Born-Oppenheimer
level. Some work on relativistic, quantum electrodynamics, and
adiabatic (diagonal Born-Oppenheimer) contributions to the
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potential has been published50,84,85and a more extensive set of
calculations is underway.51 Some of these contributions are
significantly larger than the uncertainty of our Born-Oppen-
heimer potential. Thus, one can hope that these contributions
can be detected in the most accurate experiments. The avail-
ability of such an accurate pair potential opens also a possibility
of a reliable experimental determination of the very subtle three-
body pairwise nonadditive interactions of helium atoms.83,86,87
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Appendix A. MP2 Interaction Energies with Upper
Bounds

As a byproduct of our GTG FCCD calculations, we have
obtained very accurate MP2 interaction energies,EMP2

cr , which
were subsequently extrapolated to the basis set limit in exactly
the same way as in the case of the FCCD interaction energies.
The extrapolated values are listed in Table 11. Since theEMP2

cr

interaction energies are the best converged quantities computed
by us, it is of interest whether one can also obtain useful upper
bounds to these values. Although the total MP2 energies
converge from above upon enlarging the basis set (assuming
that exact SCF orbitals are used), such behavior is not guaranteed
for the interaction energy because this quantity is computed as
a difference of dimer and monomer MP2 energies calculated
with the same basis set. It is possible, however, to calculate a
strict upper bound to the MP2 interaction energy by subtracting
theexactenergies of the monomers. To obtain the “exact” MP2
energy of the helium atom, which is of interest by itself, we
optimized various GTG expansions, ranging fromK ) 75 toK
) 600, using the same procedure as that for the He2 calculations.
During the optimization, a very accurate 24-term SCF orbital
was used, expanded in a basis of 1s Gaussian functions (the
same set as that used to construct the He2 SCF orbitals), which
yields the helium atom SCF energy 0.14 nhartree above the
HF limit.88 As seen in Table 12, the helium atom MP2
correlation energies converge fast and smoothly. Similarly as
in the case of MP2 and FCCD interaction energies discussed
earlier, the doubling of the basis set size increases the accuracy
by about one digit. Thus, since theK ) 300 result is different

from theK ) 600 result by 0.14 nhartree, theK ) 600 value
should be within about 0.01-0.02 nhartree of the exact value.
Consequently, we have estimated the latter value to be
-37.377 474 54(2) mhartree. This value is 3 orders of magnitude
more accurate than the previous best MP2 correlation energy
for helium.60 The final results listed in Table 12 were checked
by recalculating theK ) 600 MP2 energies with an even more
accurate 32-term SCF function, corresponding to the SCF energy
of -2.861 679 995 59 hartree, just 0.02 nhartree above the limit.
All the digits listed were unchanged, which proves that the
results are saturated with respect to the zeroth-order function.

The last column of Table 11 contains the MP2 interaction
energies of the helium dimer calculated by subtracting the
monomer energies of-37.377 474 56 mhartree (the estimated
lowest possible value for the monomer) from the (K ) 800,M2

) 8) dimer energies (see the discussion of the FCCD energies
for the explanation of the construction of the basis sets). A closer
analysis shows that either the results forM2 ) 8 are saturated
with respect to the SCF interaction basis set size,M2, or at least
the difference between the values forM2 ) 8 andM2 ) 16 is
small compared with the difference between the results (for a
fixed M) for K ) 800 andK ) 600. Hence, the results forM2

) 8 andK ) 800 represent, to the number of digits given, strict
upper bounds to the MP2 interaction energies. The extrapolated
values in Table 11 are fully consistent with the upper bounds
and lie below the latter a few values ofσ away. This provides
a valuable consistency check for our extrapolation procedures.

Supporting Information Available: Extended versions of
the tables, including the values of all the interaction energy
components at each internuclear distance considered. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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